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Exact 15-term series expansions are given for the cooperative kinetics of adsorp- 
tion of particles to a one-dimensional lattice with nearest-neighbor exclusion. 
Pad6 approximants to various forms of the series accurately describe the relaxa- 
tion process, which is found to be well-approximated by assuming instantaneous 
internal equilibrium on the lattice. The series do not describe the very last stages 
of decay to equilibrium well and it has not been possible to extract from them 
the limiting relaxation parameters. The series show that the rate of change of the 
particle density on the lattice is not analytic in the density when expanded about 
the equilibrium state. 

KEY WORDS: Cooperative kinetics; time power series; radius of con- 
vergence; singularities. 

1. I N T R O D U C T I O N  

In the present paper I study the kinetics of adsorption of molecules from 
a reservoir of constant activity to a one-dimensional lattice with nearest- 
neighbor exclusion. This is one of the simplest models that one can con- 
struct to study the dynamics of cooperative condensation. Using matrix 
techniques derived from the statistical mechanics of two-dimensional equi- 
librium lattice gases, I obtain long (15-term) exact series expansions for the 
kinetics. I then compare the results of the series analysis with an exact 
solution obtained by assuming that the system passes through equilibrium 
states (internal equilibration) at all stages in the relaxation. I find that for 
the overall relaxation process the assumption of internal equilibration 
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works quite well, but that when one examines the details of the final decay, 
the two approaches give very different pictures. I begin by describing the 
model. 

2. THE M O D E L  

Consider a one-dimensional lattice initially in equilibrium with a reser- 
voir containing the adsorbate at activity z0; the lattice will have the same 
activity and an appropriate density po(Zo). Throughout  I assume that the 
reservoir and the lattice are homogeneous. At t = 0 the activity of the reser- 
voir is increased suddenly from z o to zoo. The density of particles on the 
lattice will then increase, relaxing from P0(Zo) at t = 0 to poo(z~) at t = oe. 
Figure 1 schematically illustrates the time dependence of the activity of the 
reservoir and the resultant relaxation of the lattice gas density. I consider 
only the special case Zo = Po = 0, i.e., I begin with an empty lattice. For  
simplicity I will use z to refer to the constant final activity of the reservoir 
when there is no danger of confusion. 

In this model a particle can bind to a lattice site only if the nearest- 
neighbor lattice sites are empty. The model is illustrated in Fig. 2, where 
two processes are shown. The first process illustrated is exchange of par- 
ticles between the reservoir and the lattice, a particle being able to bind to 
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Fig. 1. Schemat ic  represen ta t ion  of a s tep j u m p  in the act iv i ty  of the reservoir  f rom z o to z ~  

at  t = 0 and  the resul t ing  re laxa t ion  of the densi ty  of par t ic le  p on the lat t ice f rom Po at  t = 0 
to p ~  at  t = o e ,  

Zo 
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Fig. 2. Illustration of the 1D lattice gas with nearest-neighbor exclusion. The arrows 
represent the two possible types of process: the vertical arrows indicate exchange reactions 
with the reservoir, while the horizontal arrows represent diffusion on the lattice. The l 's and 
O's index sites that are, respectively, occupied and vacant. 

the lattice only if three contiguous sites are empty. The second process is 
the diffusion of particles on the lattice, a particle being able to move to a 
neighboring lattice site only if its two adjacent sites are unoccupied. Let us 
consider first the case where there is no diffusion on the lattice (exchange 
only). 

Letting 0 and 1 represent, respectively, an empty and an occupied 
lattice site, then the basic mechanism for the change of density on the lat- 
tice will be the exchange of a particle with the reservoir, which I represent 
by the following reaction with forward (k + ) and backward ( k - )  rate 
constants: 

k+ 
o ~ 1 (2.1) 

k -  

From the principle of detailed balance one has 

k +/k = z (allowed transition) 
(2.2) 

k + / k -  = 0 (forbidden transition) 

that is, a transition (addition of a particle) is either allowed or forbidden, 
and if it is allowed, a particle contributes a factor z to the probability of 
any lattice configuration. One could alternatively write k + / k  - = zK, where 
K is the binding constant for the process of (2.1); this would simply scale 
the activity, z ' =  zK, and would not alter what follows. I choose 

k - = l  

k + = z (allowed transition) (2.3) 

k + = 0 (forbidden transition) 
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as the simplest assignment that is consistent with the requirements of (2.2); 
other choice, e.g., k -  = 1/~/z and k § = ~/z, simply redefines the time any 

scale. 

3. M A T R I X  GENERATION OF SERIES 

The kinetics of adsorbtion for the model described in the previous 
section is determined by a set of coupled first-order differential equations 
describing the interconversion of all possible lattice configurations. Let p be 
a row vector whose general element Pn is the probability of the nth lattice 
configuration. Then the kinetics can be described by the equation 

dp/dt = - p W  (3.1) 

where W is the appropriate matrix of rate parameters as given in (2.3). 
From (3.1) the nth derivative of p evaluated at t = 0 is 

dnp/dt"= ( - 1 ) n p ( O ) W  n (3.2) 

Letting v + be a column vector whose general element is the number of 
particles in the nth lattice configuration, one has a general relation for the 
net density 

p(t) = p(t) .  v +/N (3.3) 

where N is the number of sites in the lattice. Expanding p(t) in a power 
series in the time 

p(t)= ~ p~")t"/n! (3.4) 
n = O  

and using (3.2) and (3.3), one has 

pC,) = N -  1( _ 1 )n p(0) Wnv + (3.5) 

The problem of course in using (3.5) is that as N, the number of lattice 
sites, is increased, the number of lattice configurations gets very large 
indeed. However, if one wraps the one-dimensional lattice into a circle, 
then one can use symmetry to greatly reduce the number of configurations 
that must be considered. The problem of the kinetics of the one-dimen- 
sional lattice with nearest-neighbor exclusion is in fact very similar to the 
equilibrium statistical mechanics of the two-dimensional lattice with 
nearest-neighbor exclusion. In the equilibrium problem the partition func- 
tion for a lattice torus (consecutive rings of lattice sites) can be generated 
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by a matrix that correlates all possible states of a single ring with all 
possible states of a neighboring ring (with the condition of nearest- 
neighbor exclusion). In the kinetic problem all of the states of a given ring 
can make appropriate transitions to other states of the ring. In both cases, 
the size of the required matrix is simply the number of ring configurations. 
Thus, the problem of obtaining time series for a one-dimensional model is 
equivalent in difficulty to obtaining the equilibrium activity series for a 
two-dimensional model, both being two-dimensional problems, the equi- 
librium problem having dimensions (space)x (space), while the kinetics 
problem has dimensions (space)x (time). For the equilibrium problem 
Runnels and Combs (1) have shown that one need consider only the 
irreducible set of ring configurations (those that cannot be obtained by 
reflection of rotation from the others). 

To illustrate the use of symmetry-reduced matrices for kinetics, 
consider a ring of N = 4 sites. There are three possible ring configurations 
in the irreducible set: 

0 1 1 
0 0 0 0 0 0 (3.6) 

1 0 1 

(0) (1) (2) 

All other ring configurations can be obtained by rotations of configurations 
(1) and (2). The differential equations describing the kinetics are (where P l 
and P2 represent the probabilities of the respective rings regardless of 
orientation) 

dpo/dt = - 4 z p o  + Pl  

dp l /d t  = 4zpo - (1 + z)  p 1 + 2p2 

d p 2 / &  = z p l  - 2p2 

The appropriate matrix W is then 

(40 W =  1 

and the vectors p(O) and v + are 

p(0)= (1 0 0), 

- 4 z  0 t 
l + z  z 
-2 -2 

v+=(!) 

(3.7) 

(3.8) 

(3.9) 
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As with the equilibrium system, (2) if one wants to obtain the p('~ in 
(3.4) through n for the infinite lattice, then one must consider a ring 
containing at least n + 1 sites. Thus, to obtain through p(lS) for the infinite 
lattice we require a ring with n = 16; Runnels and Combs ~1) have shown 
that the set of irreducible ring configurations in that case has 99 elements, 
requiring a 99 x 99 matrix. The p(n) generated from W" will be polynomials 
in the activity 

P ( ' ~ = ( - 1 )  n ~ ~m, Zn (3.10) 
m = 0  

The O~mn for n through 15 are listed in Appendix A. The example treated 
above for N = 4 ,  using (3.8) and (3.9) in (3.5), gives the first three p(") for 
the infinite lattice; these quantities are 

p(1) = z, p(2) = --Z -- 3Z 2 

p(3) = z  + 6z 2 + l l z  3 
(3.11) 

4. RADIUS OF CONVERGENCE 

For  any finite set of species connected by first-order reactions, such as 
(3.7), with the kinetics described by a differential equation of the form of 
(3.1), the exact solution is a sum of terms of the form e x p ( -  coit), where the 
~oi are the eigenvalues of the matrix W. The series expansion (3.4) thus will 
have an infinite radius of convergence for a finite set of species, since the 
functions exp(-~oi t )  converge for all t. However, in the limit that the 
number of species becomes infinite, the series can have a finite radius of 
convergence. 

For  a well-behaved series the easiest way to determine the radius of 
convergence is to examine the ratios of successive terms. Taking our basic 
series (3.4) 

p ( t ) = Z a ,  t n 
n 

an = p(n)/n! 

(4.1) 

we form the ratios 

rn = an~an 1 (4.2) 

If the ratios vary smoothly with n, then one has 

lim n ~ ~ ,  r .  ~ t j  I (4.3) 
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where t~ is the radius of convergence of the series. Figure 3 shows r ,  as a 
function of 1/n constructed using the 15-term series of Appendix A; the case 
shown is for zoo = 2, in which case poo = 1/3. The ratios are seen to vary 
monotonically with 1In, but they do not level off to a linear variation in the 
range shown. Clearly it is possible that the r ,  could plunge to zero as 
1In ~ O, but the variation of the r,  for the infinite lattice shown is very dif- 
ferent in behavior from the r .  (not shown) for the finite ring N =  4, where 
the r ,  obviously go to zero. If one takes successive pairs of points r,  and 
r , _ l  and constructs a straight-line extrapolation for each pair, obtaining 
thereby a series of estimates t~(n),  these extrapolate linearly with 1In as 
shown in Fig. 3; the extrapolated value gives t2 ~ =0.35, or t~=2.86. The 
straight line to which the rn are shown approaching in Fig. 3 is the 
hypothetical variation of the ratios for a singularity of the form 

[ P o o - - P ( t ) ] ~ ( l _ ~ )  v (4.4) 

for which the ratios vary linearly with 1In as 13) 

r .  ~ t ; ' [ 1  - ( 1 / n ) ( 1  - ~ ) ]  (4.5) 

The line shown uses the parameters t 2 1 =  0.35 and v = 17. There of course 
may be a more complicated form for the singularity than (4.4). 

1.2 

0.8 

0.4 

~ ~ ~ ' 4 ~ " 4 r  ~ r~  r m 

~ ~ to.-I (m) 

I I I 
0.0 0.05 0.10 0.15 

[ / m  

Fig. 3. Ratio r,, for the time series (4.1) for the case zoo = 2; the points shown are for m = 6 
to 15. Also shown are the quantities t21(m) obtained from straight-line extrapolation of 
successive pairs of ratios to 1/m = O. 
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The evidence thus is strong that the time series for our one-dimen- 
sional hard-particle model has a singularity on the negative t axis and 
hence a finite radius of convergence. I speculate that this is a feature of all 
hard-particle systems, since it is found in the simplest such system. 

Before turning to the numerical analysis of the series given in 
Appendix A, I will derive the kinetics of adsorption for the limit of internal 
equilibration which will be useful as a limiting case for comparison. 

5. THE L IMIT  OF INTERNAL EQUIL IBRATION 

The series derived in Section 3 describes the adsorption process when 
exchange with the reservoir is the only process allowed. As illustrated in 
Fig. 2, another possible process is the motion (diffusion) of particles on the 
lattice from one site to a neighboring site (if allowed). In the limit that the 
diffusion process is very much faster than the exchange process, one can 
consider the lattice to be in an instantaneous state of internal equilibrium 
appropriate to the particular density at a given time [the lattice is not in 
equilibrium with the reservoir, but is in internal equilibrium for the density 
p(t) it has at a given instant of time]. In the limit of internal equilibration 
one can integrate the kinetic equations exactly and thereby obtain a limit 
that serves as a useful comparison for the case when diffusion is not 
allowed. It can be shown (4) that the case of internal equilibration is an 
upper bound for the rate of adsorption, that is, with diffusion the rate of 
adsorption must be faster than the case without diffusion. 

The general differential equation for describing the adsorption kinetics, 
using the rate parameters of (2.3), for any hard-particle lattice gas is (here 
we let zoo be the activity of the reservoir, since we will have a time- 
dependent z for the lattice) 

d p / d t = z ~ p x - p  (5.1) 

where Px is the density of sites that can accommodate a new particle (for 
the one-dimensional model with nearest-neighbor exclusion, px=Pooo 
where Pooo is the probability of an unoccupied triplet). At equilibrium 
dp/dt--0 and one has the well-known relation for hard-particle systems at 
activity z 

px = plz~ (5.2) 

In the limit of internal equilibration (5.2) holds at all densities, thus 
defining a time-dependent activity z. Using (5.2) in (5.1) gives 
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To use (5.3) one requires the equilibrium relationship between z and p so 
that one can obtain a differential equation solely in terms of p (and t). To 
this end let us construct the grand partition function for the one-dimen- 
sional lattice of N sites with periodic boundary conditions (i.e., a ring of 
sites), which can be expressed as the trace of a matrix product as follows(5): 

~ = T r U N ~ 2  u (N--, oe) (5.4) 

where 21 is the largest eigenvalue of the transition matrix U, which is 
simply 

0 t 

The density is obtained from 21 in the usual manner, 

P 0 In z (1 -~-4Z) 1/2 

One obtains 

p (1 - 2 p )  2 

z 1 - p  

Using (5.7) in (5.3), one has the following differential equation for p: 

dp (1 - 2p) 2 
dt zoo 1 - p P 

which is readily integrated to give 

poo-p  ( 1 - p o o - p o ~  ~ 

Poo-Po \ 1 - p ~ - p  ) 

where 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

= e ,/T (5.9) 

fi=poo/(1-poo), r = l - 3 p o o + 2 p ~  (5.10) 

l 1 9t'2 ( 1 \ 1/2 1 
p ( t ) -  3 3.~/~e - / l + ~ e  -9 ' )  + ~ e  -9' (5.11) 

The quantity p~ as a function of zoo is obtained from (5.6). 
For the special case zoo = 2 and P0 = 0  (with poo = 1/3, f l=  1/2, and 

r = 2/9), (5.9) can be solved explicitly for p(t), 
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6. PADE APPROXIMANTS TO TIME SERIES 

Given a finite number of terms in a time series such as (3.4) or (4.1), 
there are two practical problems in the use of such a series. One is to 
estimate the complete function by extrapolating the series to an infinite 
number of terms and the second is to extend the series past its radius of 
convergence. The technique of Pad6 approximants offers a solution to both 
of these problems. <6) Given M +  N terms in (3.4), the (M, N) Pad~ approxi- 
mant is 

p(t)~-P(M,N)= ~ Am tm Bm tm 
m=O I m = O  

M + N  

= ~ a , t '+ a',t" (6.1) 
n=O n = M + N + I  

where the a ,  are the known exact coefficients in the series and a', are 
estimates of the remaining coefficients. The finite ratio of polynomials 
in (6.1) gives an analytic continuation of the series past the radius of 
convergence ItJ. 

In general we have found that the diagonal, M=N,  Pad6 
approximants work best for time series (the diagonal approximants 
approach a finite limit as t --* oo ). Figure 4 shows P(N, N) for N = 1, N = 2, 
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p(t) 

0.1 

0.0 

_ N = I  _ 

I I 

0.5 1.0 1.5 
t 

Fig. 4. The (N, N) Pad~ approximants to p( t )  for the case z~ = 1. 
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and N>~3 (which are superimposable) for the case z~ = 1 (Poo =0.276). 
One observes that the ratio of polynomials levels off and holds constant at 
the correct value of p~ ; note that the value of Poo was not used directly. 
Figure5 shows the P(5, 5) estimate of p(t) for zoo= 1/2, 1, and 2 
(p~ =0.21l ,  0.276, and 0.333, respectively). Again the curves level off and 
hold constant at the correct value of p~ .  

For  the case of z ~ = 2 ,  Fig. 5 compares P(N,N) for the case of 
exchange only and the case of internal equilibration, (5.11), the latter 
shown by the dashed line. One sees that there is very little difference 
between the two relaxation curves, meaning that internal diffusion does not 
influence the time course of relaxation markedly for this model. For  
z~  = 1/2 and z~ = 1 one can see no difference in the two cases on the scale 
of the graph in Fig. 5. 

One can conclude two things from the data just presented. First, the 
technique of Pad6 approximants applied directly to finite time series for 
p(t) works extremely well, giving the complete relaxation to the final 
equilibrium state. Second, the limit of internal equilibration is not only an 
upper bound to the rate of relaxation in this model, it is an extremely good 
estimate of the relaxation for all times. 

And yet, if one examines in detail the nature of p(t) as t ~ 0% one 
finds both quantitative and qualitative differences between the limit of 
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p( t )  
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I I I 

Zco = 2 

11/2 

I [ I 
0.0 0.5 1.0 I 5 2.0 

t 

Fig. 5. The (5, 5) Pad6 approximants (solid curves) to p(t) for Zoo = 1/2, 1, and 2. The 
dashed curve gives p(t) in the limit of internal equilibration for z~ = 2 obtained from (5.11); 
for the other values of z~ the limits of internal equilibration and exchange only are 
indistinguishable on the scale of this graph. 

822/55/1-2-26 
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internal equilibration and the case of exchange only. From the close agree- 
ment of the two curves in Fig. 5 it is clear that this difference would not be 
apparent from an experimental curve or from a Monte Carlo computer 
simulation. But it does become apparent when one has long (15 terms in 
this case) exact series. I now examine the differences in the two limits 
(exchange only and internal equilibration) in detail. 

7. RELAXATION F U N C T I O N  A N D  EULER T R A N S F O R M  

It is convenient to introduce a function that varies from one to zero 
over the course of the adsorption process. This is easily accomplished by 
introducing the function 

A = 1 - p / p ~  (7.1) 

which has the properties 

A(t = 0 )  = 1, A( t=  ~ ) = 0  (7.2) 

Since all relaxation curves look qualitatively similar, it is also useful to 
introduce a function that measures how A differs from the simplest form of 
relaxation, namely simple exponential decay. Define the relaxation function 
k(t) by the relation 

zl(t) = e-,k(,) (7.3) 

where k(t) is a kind of time-dependent relaxation parameter. If A represents 
simple exponential decay, then k(t) would be a constant. If k(t) decreases 
with time, then it means that the process is slowing down relative to simple 
decay, and vice versa. 

Finally, it simplifies matters if one defines the time scale so that 
k(t = 0 ) =  1. This is achieved by scaling t as follows: 

t r Zoo = -  t (7.4) 

Using (7.1) and (7.4), the p(") of (3.4) are scaled to give 

( z~  ] 'p( . ,  (7.5) P(") '  = Poo \ p ~ }  

For simplicity I will drop the prime on t and understand that for the rest 
of this paper the scaled variable of (7.4) is being used. 

Since we will be interested in the behavior of the relaxation as t ~ o% 
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it is useful to map the interval t = 0 to t = Go onto the unit line. This is 
accomplished by using the Euler transform 

t s 

s = - -  t - ~  

l + t '  1 - - s  

s ( t  = O) = O, s ( t  = oo ) = 1 

(7.6) 

Not  only is s a convenient variable, but the use of s circumvents the 
problem associated with a finite radius of convergence in the t series, since 
a negative t~ is mapped to a positive s,  with s~ > 1 and hence the s series 
converges over the entire physical range of the function. 

Combining the k ( t )  function introduced in (7.3) and the new variable 
s defined in (7.6) gives 

(7.7) 

For the case z~ = 2 the function k ( s )  is shown in Fig. 6 for the case of 
exchange only [-labeled ~ = 0, where ~ is a parameter measuring the rate of 
diffusion; see (9.1)] and, using (5.11), for the case of internal equilibration 

0.8 

0.6 

k (s )  

0.4 

0.2 

I I I 
0.0 0.2 0.4 0 .6  0.8 1.0 

s 

Fig. 6. Var ia t ion o f  the relaxat ion function k(s) as defined by (7.?) and (7.6) for the case 
z= = 2 for ~ = 0 (exchange only)  and ~ = oo ( internal equi l ibrat ion).  For  comparison ,if(s) is 
also shown for the case ~ = 0. The solid dot  at s = 1 for the ~ = 0 k(s) function is taken from 
Fig. 7. The curve for ~ = oo is obtained f rom (5.11); the curve for ~ = 0  (solid curve) is the 
(7, 7) Pad~ approx imant  to k(s). 
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(( = oo). For the case of internal equilibration k(s) varies from k(0) = 1 to 
k (1 )=3 /4 .  The curve for exchange only was calculated using Pad6 
approximants to the k(s) series, which in turn were constructed from the 
t series of Appendix A; the curve is shown with a solid line out to about  
s = 0.9, at which point one begins to get disagreement among the various 
approximants.  One sees that the k(s) curves for the two limits are almost 
superimposable up to about  s = 0.5; for s > 0.5 the curves begin to diverge 
markedly. From the practical point of view, most of the relaxation is over 
with by s ~ 0.6 and hence, as seen in Fig. 5, the overall relaxation curves 
A(s) are very similar in the two limits. Only in the last stages of the 
relaxation process do the k(s) curves begin to diverge. For  comparison the 
variation of A(s) is shown for the case of exchange only. 

In the case of exchange only the crucial question is whether k(1) 
approaches a finite limit or drops to zero. Since the series for k(s) are not 
adequate to give reliable estimates of k(s) for s > 0.9, we have estimated 
k(1) by calculating the eigenvalue spectrum for various finite rings contain- 
ing from N = 2 up to N = 16 lattice sites. Figure 7 shows the smallest eigen- 
value coo plotted as a function of 2/N for the case of zoo = 2; the units are 
such that k ( 0 ) =  1. The quantity COo seems clearly to extrapolate to a finite 
limit as N ~  oo; we estimate the limiting value to be COo = 0.134. The point 
COo=0.134=k(1) is shown by the solid dot as s =  1 in Fig. 6; the dashed 

0.3 

0.2 

oJ o 

0. t 

I I I 
0.0 O. I 0 . 2  0 . 5  0.4 

2 / N  

Fig. 7. The points show the smallest finite eigenvalue o) o for finite rings of N sites for the 1D 
lattice gas with nearest-neighbor exclusion for zoo = 2 and ff =0.  The dashed curve is the 
extrapolation to the infinite system. The units are such that k(0) = 1. 
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curve is a freehand interpolation between the Pad6 approximant calcula- 
tion of k(s) (solid curve) and the point coo. 

Thus, while the k(s) curves for the limits of exchange only and internal 
equilibration agree well for s < 0.5, they diverge markedly as s ~ 1. For  
exchange only k(s) appears to approach the point k(1) with a slope of 
minus infinity. This is the behavior one would expect for the asymptotic 
form 

a 

A(t)~t  e-- -~o, (7.8) 

In the next section I analyze various series to see if the form of (7.8) can 
be confirmed. 

8. SEARCH FOR SINGULARITIES 

It is useful to list and tabulate the various functions that we can use. 
Let us continue to examine the case zoo = 2 with Po~ = 1/3 treated in the 
previous sections and illustrated in Figs. 5-7. Let us use the scaled time 
defined in (7.4) and the variable p/p~. The functions that we will study are 

p/po~=~a,t" (8.1) 
n 

t = ~ b,(p/poo)" (8.2) 
n 

d(p/p oo)/dt = ~ c,(p/p ~)" (8.3) 
n 

k(s) = ~ d.s" (8.4) 
n 

The coefficients in the above series are listed in Table I. 
The coefficients in (8.1) alternate regularly; in Section4 we have 

already examined the ratios for this series and have shown that the 
evidence is good that there is a singularity on the negative t axis [at  
t~ = -17.14, using the time units of (7.4)]. If we invert (8.1), we obtain t 
as a function of p. All of the coefficients in (8.2) are positive and this is 
what one would expect, since t --* ~ as p ~ Po~. In fact, given a finite coo, 
we know how t goes to infinity at p~  since, even with the form of (7.8), 

In A ~ In a - v In t - coo t 

, ,~-COot( 1 lnacoot vlnt~ot/ 

~ -coot  (8.5) 
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Table  I. The Coef f i c ien ts  in the  Series Def ined  in Eqs. ( 8 3 ) - ( 8 . 4 )  a 

n an of (8.1) b n of (8.2) c, of (8.3) d n of (8.4) 

0 0 0 1 1 
1 1 1 - 1.17 -0.0833 
2 -0.583 0.583 0.111 -0.0694 
3 0.264 0,417 0.0247 -0.0581 
4 - 0.103 0.326 9.26( - 3 ) - 0.0489 
5 0.0366 0.269 4.60(-3) -0.0417 
6 -0.0120 0.230 2.72(- 3) -0.0363 
7 3.70(-3) 0.201 1.81(-3) -0.0323 
8 - 1.08( - 3) 0.179 1.30( - 3) -0.0295 
9 3.00(-4) 0.162 9.85(-4) -0.0279 

10 - 7 . 9 9 ( -  5) 0.148 7.79(-4) -0.0271 
11 2.05(-5) 0.136 6.35(-4) -0.0271 
12 - 5.09( - 6) 0.126 5.30(-4) -0.0277 
13 1.23(-6) 0.118 4.51(-4) -0.0288 
14 -2 .87 ( -7 )  0.111 3.89(-4) -0.0303 
15 6.57(--8) 0.104 

The time is scaled according to (7.4); the density is written as (PIP.o). The coefficients are 
given for the case z~ = 2 with p~ = 1/3. The coefficients are shown to three figures only for 
clarity; the numbers in parentheses give the number m in the factor 10 m by which the 
particular coefficient should be multiplied. 

t ha t  is, if co o is finite, t h e n  

t ~ - (1 /O)o )  In A 

~ - ( 1 / c o o ) l n ( 1  - p/p~)  (8.6) 

T a k i n g  the  de r i va t i ve  of  t wi th  respec t  to  p/p~,  o n e  has  the  useful  f o r m  

dt 1 1 P / P ~  
d ( p / p ~ )  coo - 

U s i n g  the  b n o f  (8.2) in (8.7), o n e  has  

coo "~ 1/nbn (8.8) 

Thus ,  the  s equence  of  n u m b e r s  (nb,)-1 s h o u l d  a p p r o a c h  coo as a l imi t ing  

value.  T h e  e s t ima tes  o f  coo o b t a i n e d  f r o m  the  bn of  T a b l e  I a re  s h o w n  in 

T a b l e  II.  W h i l e  the  resul ts  do  seem to set t le  d o w n  to  a l imit ,  it is n o t  the  
coo (0.134) o b t a i n e d  f r o m  Fig.  7 by  e x t r a p o l a t i o n  us ing  f ini te  rings. T o  

inves t iga t e  the  ra te  o f  c o n v e r g e n c e  of  (8.8) to  a l imi t ing  value ,  I h a v e  a lso  

c o m p u t e d  the  (nbn) -~ for  the  case  of  the  f ini te  r ing  N = 4 ;  these  n u m b e r s  
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are also shown in Table II. The exact value of co o for the finite ring is 
coo=0.6402 and the numbers  (nb,)  -1 are seen to converge quickly to the 
near ne ighborhood  of this number  (with about  a 5 % tendency to wander  
a bit). The problem is that  the (nbn) -1 for the case of  the infinite ring do 
not  differ that  much from the values for the case of  the finite ring (as shown 
in Section 9, the first three terms in the series in the two cases are identi- 
cal). Accepting the value of coo obtained from Fig. 7, this means that the 
shift of (nb,) - I  to O9o=0.134 must  occur at very large values of n; this 
simply means that  for mos t  of  the relaxation, A(s) is described accurately 
by the limit of  internal equilibration (for which coo = 3/4 in this case). 

It is the density series for d(p/po~)/dt, (8.3), that  tells us the most  
about  the functional form at long times. As we have just seen, the p series 
of  (8.2) will diverge as p - ~ p ~ .  This will be true for any kinetic scheme, 
even simple chemical kinetics including a single first-order decay, and the 
reason is of course that  as p - - * p ~ ,  t must  go to infinity. Thus, it might  
seem that the p series in (8.3) would also diverge as p ~ p ~ ,  since, after all, 
the series in (8.2) and (8.3) are both  derived from (8.1). But in ordinary  
chemical kinetics the p dependence of d(p /p~) /d t  is a finite polynomial  
(e.g., linear or  quadratic).  In the limit of internal equilibration we can see 
immediately from (5.8) that  the radius of  convergence of d(p/po~)/dt is 

Table II. Successive Ratios of Coefficients 
in the Density Series (8.2) and (8.3) a 

n b, l/b, c,_ 1/c, 

2 1.72 
3 1.40 4.49 
4 1.28 2.68 
5 1.21 2.01 
6 1.17 1.69 
7 1.14 1.50 
8 1.12 1.39 
9 1.10 1.32 

10 1.09 1.26 
11 1.09 1.23 
12 1.08 1.20 
13 1.07 1.18 
14 1.06 1.16 
15 1.06 

a In both cases the ratios should be asymptotic to p~/p~, 
where po is the radius of convergence of the series. For both 
series the ratios approach unity, which means that for both 
the radius of convergence is po = p~. 
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p~ = 1, which is twice the maximum possible density (Pmax = 1/2) and much 
greater than p oo. For  the case of exchange only we can apply the ratio 
method, (4.2), to (8.3) and obtain successive estimates of p, t(p/poo) and for 
d(p/poo)/dt, 

limn--,oo:b,_l/b,~(p,/poo), Cn 1/C,~(pSpoo) (8.9) 

The values of b, 1/bn and cn_l/c" are shown in Table II; both of these 
sequences of numbers clearly extrapolate to po/poo = 1, which means that 
the radius of convergence for both series is p ,  = Po~. The ratios rn = Cn/Cn-- 
as in (4.2), for the p series for dp/dt [(8.3), but not scaled by pool are 
shown in Fig. 8 for the cases zoo = 1/2, 1, and 2; the ratios are seen to 
extrapolate smoothly to the appropriate values of p L1. This means that for 
the case of exchange only, unlike the case of internal equilibration, the 
radius of convergence of the p series for dp/dt is the final density. And this 
has a very important implication. It means that one cannot expand dA/dt 
about the final, equilibrium state; that is, the series 

dA 
a t  = E c .  A~ (8.10) 

n 

does not exist. 

5 . 0  ~ i i i 

o.o olo4 dos ol,z o',o 
I / n  

Fig. 8. Ratio r~ for the density series (8.3) for several values of z~o. The points given are for 
n = 7 to 15. The open circles at 1/n = 0  are the values of pA l corresponding to the values of 
z~ indicated. The straight lines are just guides for the eye. 
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If A(t) behaved asymptotically at large t as given by (7.8), then one 
would have 

dA A 
- - ~  -COod - V6Oo - -  (8.11) 
dt In d 

This means that the term linear in A is finite, but the series in higher 
powers of A does not exist. Thus, from (8.3) one can form (using 
A = 1 -  p / p ~ )  the zeroth- and first-order terms in dA/dt ,  

- - =  - c .  - -  n c .  A + f ( A )  (8.12) 
dt n o ",,, = 1 / 

where f (A)  cannot be expressed as a series expansion in A. From (8.10) we 
expect 

c n = 0  - ~ n c n = o %  (8.13) 
n = 0  n = l  

Table III shows the partial sums 

S , =  ~ mCm (8.14) 
m = O  

as successive estimates of ~o o. For  the case of the finite ring the partial sums 
converge nicely to the known imit, 09 o = 0.6402, but the numbers for the 
infinite ring are very far from the value of c~ o = 0.134 obtained from Fig. 7. 
Again, it seems that the series for the infinite system converge very slowly 
indeed. 

The quantities cn are themselves functions of p~ .  The question of 
forming a series in p~ for ~Oo is addressed in Appendix B. 

If the form of (7.8) is correct, then one should have [-from (8.10)] 

d(p /p  co ) 1 - p /p  o0 (8.15) 
dt ~ v~~176 In(1 - p /p  ~ )  

The series expansion for the function 

1 
f i x ) =  Z ~n xn (8.16) 

ln (1 - -x )  X,=o 

is readily calculated numerically. One then has 

VOo ~ cnl?n+ 1 (8.17) 
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Table  III. 

Poland 

Est imates  of  the  Paramete rs  v and w o Using the  Series (8 .2 )  and 
(8 .3 )  6 

Infinite ring Finite ring 

n ~%(n) S, Ogo(n ) S, c,/y, + 1 

1 1.000 1.167 1.000 1.235 
2 0.857 0.944 0.810 0.986 2.67 
3 0.800 0.870 0.714 0.810 1.62 
4 0.767 0.833 0.658 0.686 1.21 
5 0.744 0.810 0.626 0.602 1.03 
6 0.726 0.794 0.607 0.550 0.937 
7 0.71 l 0.781 0.597 0.522 0.898 
8 0.699 0.771 0.594 0.512 0.886 
9 0.688 0.762 0.595 0.514 0.890 

10 0.678 0.754 0.599 0.525 0.904 
11 0.669 0.747 0.604 0.541 0.924 
12 0.660 0.741 0.610 0.559 0.948 
13 0.652 0.735 0.617 0.557 0.975 
14 0.645 0.730 0.623 0.594 1.003 
15 0.638 0.628 0.608 
16 0.633 0.620 
17 0.636 0.630 
18 0.639 0.637 
19 0.641 0.641 

a The quantities shown are ~o0(n)= (nbn) -1 and the partial sequences S, defined by (8.14), 
which are tabulated for the infinite ring using the data of Appendix A and, for comparison, 
for the finite ring with N = 4  calculated using the matrix of (3.8). Even though the coef- 
ficients pl") through n = 3 are identical for the N = 4  and the N =  m cases, the quantities 
~oo(n ) and S, differ through n = 3, since the value of p~ used in the two cases is different: 
z ~ = 2  for both, p~(N=ov)=l /3 ,  p~(N=4)=0.353.  The quantity e,/V,+l, which is 
asymptotic to v~o 0, is also shown for the infinite lattice; the V, are the coefficients in (8.16). 

T h e  va lues  o f  the  t e rms  c, /~n + 1 a rc  l is ted in T a b l e  I I I ;  this q u a n t i t y  is seen 

to  r ap id ly  a p p r o a c h  an  a p p r o x i m a t e l y  c o n s t a n t  value,  s u p p o r t i n g  the  f o r m  

o r  (8.13) o r  (8.10) [ a n d  hence  o f  (7.8)-]. T h e  success ive  e s t ima tes  of  v ~  0 

seem to  be  a p p r o a c h i n g  a l imi t  t ha t  is a p p r o x i m a t e l y  one;  thus,  v ~ COo 1. 

F ina l ly ,  let  us e x a m i n e  the  k ( s )  series of  (8.4). F r o m  T a b l e  ! the  series 

is seen to be  well  b e h a v e d ,  the  coeff icients  b e y o n d  the  first few t e rms  be ing  

a l m o s t  c o n s t a n t ;  if tha t  b e h a v i o r  con t inues ,  t hen  k ~ - ~ as s --+ 1. C lea r ly  

the  t e rms  we are  see ing  in T a b l e  I a re  r e spons ib l e  for  the  final  p l u n g e  tha t  

the  func t i on  k ( s )  t akes  as s --* 1. H o w e v e r ,  the  func t i on  does  n o t  p lunge  to 

- ~ ,  bu t  s tops  at  co o, p r o b a b l y  wi th  an  inf ini te  s lope;  this b e h a v i o r  m u s t  
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be reflected in further terms in the series. Clearly, the estimate of the 
limiting value of k(s = 1) from the series 

coo=k(s=l)= ~ a. (8.18) 
n = O  

will not work, even though the s-series should converge at s = 1; we simply 
do not have enough terms. 

If the form of (7.8) is correct, then k(s) should have the following 
asymptotic form: 

k(s) "~ co~ v ( ~ - )  ln l ------~ss (8.19) 

and 

d2k v (8.20) ds 2 1 - s  

Equation (8.20) tells us that if we form the series d2k/ds 2 and remove a 
simple pole, we can obtain v as the residue (e.g., by using Pad6 
approximants);  in a similar manner one can obtain COo as the residue of a 
simple pole using (8.7). F rom the behavior of the coefficients dn in Table I, 
k(s) itself is behaving as if it has a simple pole at s = 1 (k ~ - o e  as s--, 1), 
and hence (8.19) clearly will not work with the series we have. The 
approach os using (8.20) is, however, attractive, since it gives an estimate 
of v independent of COo- 

Equation (8.19) implies that if one plots k(s) as a function of x In x, 
where x =  ( 1 - s ) / s ,  one should get a straight line with intercept COo and 
slope v. Taking the data for k(s) from the solid-line Pad6 approximant  
shown in Fig. 6, one can fit the data to a straight line terminating in 
COo = 0.134. The value of v so obtained is v ~ 1.9 +_ 0.1, the error indicating 
the uncertainty in the data. Since this procedure uses data only up to 
s = 0.9 and since we have seen that the series are very slow to converge, one 
must be skeptical of the accuracy of this number. This number  is consistent 
with the estimate of Vcoo~ 1 obtained from (8.17) if one uses the value 
coo ~ 0.6 (rather than 0.134) obtained from the numbers in Table III.  

9. S E R I E S  I N C L U D I N G  D I F F U S I O N  

Up to now we have treated series for the exchange-only mechanism. 
Diffusion on the surface was included only in the limit of internal equilibra- 
tion (diffusion much faster than exchange). In this section I illustrate how 
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a finite rate of surface diffusion can be included in the series expansions. 
Let 4 represent the rate parameter for the hopping of a particle from a 
general site to a neighboring site (if such a move is allowed by our 
occupancy rules, i.e., nearest neighbor exclusion) 

0011000~-~-~000100 (9.1) 

where the sites involved in the switch have been underlined. Let ~ be the 
rate parameter for the reaction in both directions (of course if the reaction 
is forbidden, the rate parameter is zero). Incorporating the effect of the 
appropriate diffusion reactions between the various ring configurations into 
the series is accomplished by including these reactions into the matrix W 
of (3.5). The coefficients p(n) are now functions of z (shorthand for zoo) and 
~. I have determined the p(") through n = 6 to see how the influence of 
internal diffusion enters the problem: 

p(~ = 0, p(1) = z ,  -p(2)=z+3z2 
p ( 3 ) = z + 6 z  2+ l l z  3 

_p(4 )  = Z + 9z 2 + 35z 3 + 47[45]  z 4 
(9.2) 

p(5) = z + 12z 2 + 26z 3 + (216 + 4~)[198] z 4 + 2271193] z 5 

_p(6) _-- I + 15z 2 -[- 142z 3 + (646 + 444 + 16~2)[546] Z 4 

+ (1413 + 684)[1057] z s + 12151819] z .6 

Setting ~ = 0 gives the series given in Appendix A. The numbers in square 
brackets are the values of the coefficient of z k in the limit ff ~ oo (internal 
equilibration). Obviously one cannot simply set 4 = oo in (8.2); the relation 
between the p(n) for finite and infinite ~ is discussed in Appendix C. 

One sees in (9.2) that with the initial condition p(O)= 0 (empty lattice 
at t = 0), the influence of internal diffusion first appears in p(5), but that in 
the limit ~ --, oo, ,0 (4) is altered (see Appendix C). The fact that internal dif- 
fusion has a very small effect on the early terms in the series presumably 
is the reason that the various series expansions examined in the previous 
section converge so slowly to give accurate estimates of co o and v. 

10. DISCUSSION 

As mentioned in Section 3, the task of obtaining series expansions for 
the kinetics of one-dimensional models is equivalent in difficulty to obtain- 
ing the series for the equilibrium properties of two-dimensional models. 
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Thus, it will be extremely difficult to obtain much longer series expansions 
for cooperative kinetics than the series reported here. A few one-dimen- 
sional cooperative kinetic models have been solved exactly, the most 
notable example being the kinetic Ising model of Glauber, (7) which can be 
interpreted as a one-dimensional adsorption model with attractive nearest- 
neighbor interactions and a special choice of the rate parameters. In that 
model Glauber finds that the exact solution is simple exponential decay. 
Since the kinetics in the present model is much more complicated than 
that, I speculate that the effect of repulsion alone always leads to more 
complicated kinetics than does attraction alone. Evans et al. (8) have studied 
the irreversible filling of lattices with steric hindrance; the present model 
treats the reversible filling, allowing the particles on the lattice to ultimately 
come to equilibrium. My purpose in carrying out the present study was to 
see how much information could be extracted from series solutions and 
how good the approximation of internal equilibration is. 

From the practical point of view, that is, in obtaining the overall 
relaxation, e.g., as described by A(s) in (7.7), the series work very well. As 
shown in Fig. 6, Pad~ approximants to k(s) give a very accurate descrip- 
tion of k(s) out to about s =  0.9 (recall that s = 1 corresponds to t = oe); as 
seen in Fig. 6, A(s) has dropped essentially to zero well before the point 
s=0 .9  is reached. In addition, we have seen that the approximation of 
internal equilibration is quite good over almost the whole course of the 
relaxation, as shown by the close agreement of the curves for k(s) in the 
limits of exchange only and internal equilibration for s < 0.5. 

From the point of view of describing accurately the very last stages of 
the relaxation, the series do not work well at all. None of the various 
methods used here comes close to giving the correct estimate of o90 = k(1) 
obtained from the numerical extrapolation of the smallest eigenvalue for 
finite rings (shown in Fig. 7). Clearly this means that when one has 
exchange only, the shifting of particles on the surface to make room for the 
last particles is very slow when one has to desorb and readsorb to move 
a particle (rather than moving by surface diffusion). This means that series 
expansions for more complicated one-dimensional and higher-dimensional 
systems (where it will be more difficult to obtain series of comparable 
length to those used in the present study) will probably not be useful to 
obtain asymptotic relaxation parameters. This is in contrast to the 
behavior of the Glauber (71 model with attractive nearest-neighbor inter- 
actions (in the adsorption model interpretation), where the decay is exactly 
simple exponential decay and the coefficient of the linear term in the 
density expansion of dp/dt gives the exact behavior for all timer 

The most important finding of this study is that the radius of con- 
vergence of the dp/dt series as a function of p is P~o, which means that a 
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series expansion about the equilibrium state does not exist beyond the 
linear term. Thus, one can linearize the kinetics of such cooperative systems 
about the equilibrium state, but one cannot systematicaly move on and 
obtain the quadratic term and so on; one must know the nature of the 
long-time functional form [-e.g., (7.8) for the present model]. I speculate 
that this will be a property of all cooperative models that include a hard- 
core, repulsive part in the interaction potential. 

A P P E N D I X  A 

In this Appendix I give the coefficients p(') in the series 

p( t )=  ~ p(")t~/n! 
n = 0  

(A.1) 

for the model of reversible adsorption from a reservoir to a linear lattice 
with nearest-neighbor exclusion discussed in the text. The coefficients p(") 
are series in the activity z of the molecules in the reservoir 

p(n)= ~ ~mnZ m (A.2) 
m = l  

Using the matrix techniques described in the text, I have determined p(') 
for the infinite lattice through n = 15. The ~mn are listed below, where the 
value of n is indicated and m increases from one to n across the appropriate 
row of numbers: 

(n= 1): 1 
(n=2):  1; 
(n= 3): 1; 
(n=4):  1; 
(n= 5): 1; 
(n=6):  1; 
(n = 7): 1; 
(n=8):  1; 
(n = 9): 1; 

3 
6; 11 
9; 35; 47 
12; 76; 216; 227 
15; 142; 646; 1413; 1215 
18; 249; 1620; 5523; 9778; 7107 
21; 429; 3741; 17,595; 47,999; 71,431; 44,959 
24; 746; 8316; 50,268; 187,360; 427,814; 549,612; 305,091 

(n=10): 1; 27; 1328; 18,188; 134,694; 641,750; 1,998,000; 3,929,620; 
4,443,145; 2,206,399 

(n= 11): 1; 30; 2431; 39,528; 346,394; 2,023,324; 8,056,734; 21,574,840; 
37,278,693; 37,645,606; 16,913,987 

(n= 12): 1; 33; 4567; 85,675; 865,674; 6,029,402; 29,522,654; 101,015,286; 
237,229,301; 365,503,237; 333,495,179; 136,823,263 
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(n=  13): 1; 36; 8760; 185,328; 2,117,145; 17,258,072; 101,269,816; 
425,622,128; 1,274,536,419; 2,664,215,044; 3,703,507,408; 3,082,040,416; 
1,163,490,499 

(n=14):  1; 39; 17,058; 399,954; 5,088,699; 47,958,961; 331,446,668; 
1,666,172,700; 6,111,939,191; 16,256,789,801; 30,611,843,794; 
38,763,132,626; 29,651,828,109; 10,366,252,031 

(n=  15): 1; 42; 33,557; 860,652; 12,054,453; 130,398,854; 1,048,847,593; 
6,187,394,472; 27,047,464,483; 87,908,857,526; 210,267,251,071; 
360,192,872,556; 418,797,337,830; 296,407,762,586; 96,491,364,675 

APPENDIX  B 

In this Appendix I evaluate the leading terms in the series in poo for 
COo, the limiting relaxation parameter. Equation (8.3) expresses dp/dt as a 
series in p (using here p, not p/poo and scaling time to make co = t) 

dt cnP~ (B.I) 
n = O  

from which a series for COo can be constructed using (8.11), 

COo=k(s= 1)= - ~, nc,p~ (B.2) 
n = l  

The quantities c, are functions of z (shorthand for zoo) which in turn is a 
function of poo. Thus, in order to extract the total poo dependence of COo we 
need the z dependence of the c,. The first coefficients are 

Co= 1 

c~ = - ( 3  + 1/z) 

c2 = 2/2! 

c3 =4/3! (B.3) 

c4 = [16 + 4(1/z)]/4! 

c5 = [96 + 72(1/z) + 8(1/z)2]/5! 

c 6 = [768 + 1152(1/z) + 320(1/z) 2 + 24(1/z)3]/6! 

From (5.7) the relation between p and z is 

p 1 - 2p 
1 - 3p + p2 + p3 + p4 + . . .  (B.4)  

z 1- -p  
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We cannot calculate the coefficients of pm exactly, because there are 
contributions to the coefficients from all the c, beyond a certain n. For 
example, the coefficients c3, c4, c5 .... all contribute to the coefficient of p~ .  
For the case of p 3  one sees from (B.3) that the contributions will be 
respectively [I give a few more terms than are shown in (B.3)] 

4/3!, 4/4!, 8/5!, 24/6!, 96/7I, 480/8!,.. (B.5) 

which is easily generalized to 4 ( n -  3)!/n!, giving as the net contribution to 
the coefficient of p~  

~ n ( n - 3 ) !  ~, 1 4 ~ m r  
4n~  3= ~ 4n=3 ( n -  1 ) - ( n - 2 ) -  ,n=l , 1 ) = 4  (B.6) 

In this manner we can obtain the beginning terms in the series expansion 
of coo in powers of p~:  

(exchange only) COo = 1 - p ~  - 3p~ + .-- (B.7) 

Using (5.11) with the scaling relation of (7.4), one obtains for the limit of 
internal equilibration 

(internal equilibration) COo = 1 - p~  - 2p 3 + -.. (B.8) 

Thus, one sees that the two functions only slowly diverge from one 
another. 

A P P E N D I X  C 

In this Appendix I show how the time series for finite ~ and infinite 
(the limit of internal equilibration) are related. The parameter ~ is the rate 
constant for internal diffusion, as shown in (9.1). Note that the p(n) as given 
by (9.2) has the form 

3 n m - - 4  

p,m= 2 ak, zk+ 2 zk E ajkn~ j ( n > 3 )  (C.1) 
k = l  k = 4  j = O  

Constructing p(t) for finite 

p(t) = Z p(")t"/n! (C.2) 
n 

one then forms the p(m in the limit that ~ ~ 0o by taking the double limit 

(lim t-*O, ~--* ~ )  d'{p(")t"/n!}/dt i (C.3) 
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such that 

(lim t ~ 0 ,  ~ ~ ~ )  ~ t ~ l  (C.4) 

With (C.3) and (C.4) one finds that ajkn contributes to the z k coefficient of 
p(n j). Then in the limit r --* oo 

3 n 

p(") = ~ ak.Z ~ + ~. ak: zk (n > 3) (C.5) 
k ~ l  k = 4  

where 

a'kn = ~ aL n,k,~/(L--n)! (C.6) 
L=n 

and one has the result that p(~) for ~ = oe has contributions from all the p(i) 
for finite ~ with i > n. Of  course, we know the p(") for ~ = oe exactly from 
knowledge of the limit of internal equilibration. 
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